NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Gyromagnetic damping and the role of spin-wave generation in pulsed inductive microwave magnetometry
Published
Author(s)
Michael Schneider, Thomas Gerrits, Anthony B. Kos, Thomas J. Silva
Abstract
The dependence of the magnetodynamic response of thin permalloy films was measured with a pulsed inductive microwave magnetometer as a function of varying width of the coplanar waveguide center conductor (220 to 990 υm), frequency (0.6 to 2 GHz) and film thickness (25 to 93 nm) to ascertain the role of magnetostatic spin-wave generation in the low-frequency enhancement of the measured decay rate. A component of the decay rate depends on δw, the ratio of film thickness to center conductor width as theoretically predicted. However, there is an anomalous contribution to the frequency dependence of the decay rate exists that cannot be attributed to the generation of spin-waves.
Schneider, M.
, Gerrits, T.
, Kos, A.
and Silva, T.
(2005),
Gyromagnetic damping and the role of spin-wave generation in pulsed inductive microwave magnetometry, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31937
(Accessed October 10, 2025)