NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
On-grid compressive sampling for spherical field measurements in acoustics
Published
Author(s)
Alex Yuffa, Marc Valdez, Michael Wakin
Abstract
We derive a theoretically guaranteed compressive sensing method for acoustic field reconstructions using spherical field measurements on a predefined grid. This method can be used to reconstruct sparse band-limited spherical harmonic or Wigner $D$-function series. Contrasting typical compressive sensing methods for spherical harmonic or Wigner $D$-function series that use random measurements on the sphere or rotation group, the new method samples on an equiangular grid in those domains, which is a commonly used sampling pattern. Using the periodic extension of the Wigner $D$-functions, we transform the reconstruction of a Wigner $D$-function series (of which spherical harmonics are a special case) into a multi-dimensional Fourier domain reconstruction problem. We establish that this transformation maintains sparsity in cases of interest and provide numerical studies of the transformation's effect on sparsity. We also provide numerical studies of the reconstruction performance of the compressive sensing approach compared to classical Nyquist sampling. In the cases tested, we find accurate compressive sensing reconstructions need only a fraction of the measurements dictated by the Nyquist sampling theorem. Moreover, using one-third of the measurements or less, the compressive sensing method can provide over 20dB more denoising capabilities than oversampling with classical Fourier theory.
Yuffa, A.
, Valdez, M.
and Wakin, M.
(2022),
On-grid compressive sampling for spherical field measurements in acoustics, Journal of the Acoustical Society of America, [online], https://doi.org/10.1121/10.0014628, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934668
(Accessed October 10, 2025)