NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Further Studies of Cup-Burner Flame Extinguishment.
Published
Author(s)
F Takahashi, Gregory T. Linteris, Vishwanath R. Katta
Abstract
The structure and extinguishment of heptane-air co-flow diffusion flames formed on a cup burner in normal earth gravity have been studied experimentally and computationally. A gaseous fire-extinguishing agent (CO2) was introduced gradually into a coflowing oxidizer stream until blowoff-type extinguishment occurred. The measured minimum extinguishing concentration of CO2 was (19.2 - 0.8) % in volume fraction. A first attempt was made at numerical simulations with full n-heptane chemistry to reveal the detailed flame structure and suppression processes. Overall features of n-heptane flames resembled those of methane flames studied previously: a peak reactivity spot (reaction kernel) in the flame base was responsible for flame attachment and destabilization processes. The initial fuel (heptane) decomposed at moderate temperatures and disappeared on the fuel side before reaching the high-temperature flame zone, and thus CO, H2, C2H2, CH4, and C2H4 became the major intermediates and fuel fragments burning in the flame zone.
Takahashi, F.
, Linteris, G.
and Katta, V.
(2006),
Further Studies of Cup-Burner Flame Extinguishment., Halon Options Technical Working Conference, Albuquerque, NM, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=100931
(Accessed October 11, 2025)