NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Finite-temperature modeling of nanoscale spin-transfer oscillators
Published
Author(s)
Stephen E. Russek, Shehzaad F. Kaka, William Rippard, Matthew Pufall, Thomas J. Silva
Abstract
Magnetization dynamics induced by spin-polarized currents in magnetic nanodevices have been numerically simulated using a single-domain model proposed by Slonczewski extended to include temperature effects. For currents with a spin polarization antiparallel to the device easy axis and for fields above the magnetostatic anisotropy field, transfer of spin momentum from one layer to an adjacent layer can cause the layers to undergo sustained oscillations. Here we numerically calculate the expected excitation spectra and linewidths of spin-transfer oscillators and explain observed variations in excitation linewidths. The linewidth arises from thermal excitations that give rise to disorder in the orbits and, in certain regimes, hopping between nearly degenerate orbits. The excitation spectra for a 2.5 nm X 50 nm X 100 nm device show transitions from thermally activated elliptical motion, at zero and low currents, to a bent elliptical motion at intermediate currents, and finally to tilted out-of-plane orbits. At the transition between in-plane and out-of-plane orbits, there is a region of low-frequency noise due to thermal hopping between degenerate orbits and a shift in the spectral behavior. The linewidth arising from thermal interactions is a sensitive function of the device volume and varies from 1 to 2 GHz for 2.5 nm X 50 nm X 100 nm devices to 20 to 40 MHz for 10 nm X 200 nm X 400 nm devices. The modeling explains the difference in linewidths observed for nanopillar and point-contact geometries as a natural consequence of inherent thermal fluctuations and the difference in excitation volumes.
Citation
Physical Review B (Condensed Matter and Materials Physics)
Russek, S.
, Kaka, S.
, Rippard, W.
, Pufall, M.
and Silva, T.
(2005),
Finite-temperature modeling of nanoscale spin-transfer oscillators, Physical Review B (Condensed Matter and Materials Physics), [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31540
(Accessed October 6, 2025)