NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Finite element analysis of the lateral capacity of cold-formed steel shear walls after fire exposure
Published
Author(s)
Shuna Ni, Xia Yan, Matthew Hoehler, Thomas Gernay
Abstract
Cold-formed-steel construction frequently relies on strap-braced, cold-formed-steel framed walls as the lateral-force resisting system. While the behavior of these walls has been studied during fire and under lateral loading separately, the influence of multi-hazard interactions – and particularly the effect of fire damage on walls' subsequent lateral load resistance – remains poorly understood. This paper presents a simulation procedure to analyze the thermal and structural response of cold-formed-steel walls when subjected sequentially to fire and lateral load, which is validated against full-scale experiments. The results indicate that the numerical model can capture the post-fire response of cold-formed steel walls, including lateral strength, stiffness, and ductile failure. The lateral behavior of the walls was found to depend primarily on the maximum temperature reached in the cold-formed steel members, and their resulting residual material properties. Then, the validated simulation procedure was used to estimate the residual lateral performance of a strap-braced wall after exposure to various high temperatures. For the residual strength of the cold-formed steel material, data collected from the literature was combined with new test data from the authors to study the effect of variability in material post-fire strength on the wall's response. The outcomes of this research will help engineers to determine the post-fire performance of a wall as a function of the severity of the fire event.
Proceedings Title
Proceedings of the 12th Asia-Oceania Symposium on Fire Science and Technology
Conference Dates
December 7-9, 2021
Conference Location
Brisbane, AU
Conference Title
AOSFST 2021 – 12th Asia-Oceania Symposium on Fire Science and Technology
Ni, S.
, Yan, X.
, Hoehler, M.
and Gernay, T.
(2021),
Finite element analysis of the lateral capacity of cold-formed steel shear walls after fire exposure, Proceedings of the 12th Asia-Oceania Symposium on Fire Science and Technology, Brisbane, AU, [online], https://doi.org/10.14264/0825e72, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933726
(Accessed October 2, 2025)