Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Ferromagnetic Resonance Detection with a Torsion-mode Atomic-force Microscope

Published

Author(s)

M. Loehndorf, John M. Moreland, Pavel Kabos

Abstract

We have developed a ferromagnetic resonance (FMR) instrument based on a torsion-mode atomic-force microscope (AFM). The instrument measures the torque on a magnetized thin film in a static out-of-plane field perpendicular to the film surface. The magnetic film is deposited outo an AFM microcantilever. FMR measurements are performed at a fixed microwave frequency of 9.15 GHz with a sweeping in-plane field. At the FMR condition, the change in the average in-plane magnetization of the film is at a maximum corresponding to a maximum change in the torque on the AFM cantilever. Our instrument is capable of measuring fluctuations of in-plane magnetization of 63.3 A/m of NiFe film samples with a total volume of 1.1x10-10 cm3. Given a signal-to-noise ratio of 40, we estimate a magnetic moment sensitivity of 1.7 x 10-16 A/m2.
Citation
Applied Physics Letters
Volume
76
Issue
9

Keywords

atomic force microscope, ferromagnetic resonance (FMR), instrument measures the torque, magnetization fluctuations microcantilev
Created February 1, 2000, Updated February 19, 2017