NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Fatigue measurement of pipeline steels for application of gaseous hydrogen transport
Published
Author(s)
Andrew J. Slifka, Elizabeth S. Drexler, Robert L. Amaro, Louis E. Hayden, Damian S. Lauria, Nikolas W. Hrabe, Douglas G. Stalheim
Abstract
A comprehensive testing program to determine the fatigue crack growth rate of pipeline steels in pressurized hydrogen gas was completed; the project was sponsored by the Department of Transportation, and was conducted in close collaboration with the ASME B31.12 Committee on Hydrogen Piping and Pipelines. Four steels were selected, two X52 and two X70 alloys. Other variables included hydrogen gas pressures of 5.5 MPa and 34 MPa, a load ratio, R, of 0.5, and cyclic loading frequencies of 1 Hz, 0.1 Hz, and a few tests at 0.01 Hz. Of particular interest to ASME and the Department of Transportation (DOT) was whether the X70 materials would exhibit higher fatigue crack growth rates than the X52 materials. These American Petroleum Institute (API) steels are designated based on yield strength, and monotonic tensile tests have historically shown that loss of ductility correlates with an increase in yield strength. The X70 materials performed on par with the X52 materials in fatigue. This program was developed in order to provide a modification to the ASME B31.12 code that is based upon fatigue, the primary failure mechanism in pipelines. This paper describes, in detail, the testing that formed the basis for the code modification.
Citation
Journal of Pressure Vessel Technology-Transactions of the ASME
Slifka, A.
, Drexler, E.
, Amaro, R.
, Hayden, L.
, Lauria, D.
, Hrabe, N.
and Stalheim, D.
(2018),
Fatigue measurement of pipeline steels for application of gaseous hydrogen transport, Journal of Pressure Vessel Technology-Transactions of the ASME, [online], https://doi.org/10.1115/1.4038594
(Accessed October 11, 2025)