NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress
Published
Author(s)
Zydrunas Gimbutas, Leslie Greengard
Abstract
In this paper, we present a fast multipole method (FMM) for the half-space Green's function in a homogeneous elastic half-space subject to zero normal stress, for which an explicit solution was given by Mindlin (1936). The image structure of this Green's function is unbounded, so that standard outgoing representations are not easily available. We introduce two such representations here, one involving an expansion in plane waves and one involving a modified multipole expansion. Both play a role in the FMM implementation.
Gimbutas, Z.
and Greengard, L.
(2015),
A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress, Advances in Computational Mathematics, [online], https://doi.org/10.1007/s10444-015-9416-1
(Accessed October 10, 2025)