Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared

Published

Author(s)

Evangelos Theocharous, Rohit Deshpande, Anne Dillon, John H. Lehman

Abstract

The performance of a pyroelectric detector with a carbon multiwalled nanotube coating was evaluated in the 0.9-14 υm wavelength range. The relative spectral responsivity of this detector was shown to be flat over most of the wavelength range examined, and the spectral flatness was shown to be comparable to the best infrared black coatings currently available. This finding is promising because black coatings with spectrally flat absorbance profiles are usually associated with the highest absorbance values. The performance of the detector (in terms of noise equivalent power and specific detectivity) was limited by the very thick (250 υm thick) LiNbO3 pyroelectric crystal onto which the coating was deposited. The responsivity of this detector was shown to be linear in the 0.06-2.8 mW radiant power range, and its spatial uniformity was comparable to that of other pyroelectric detectors that use different types of black coating. The carbon nanotube coatings were reported to be much more durable than other infrared black coatings, such as metal blacks, that are commonly used to coat thermal detectors in the infrared. This, in combination with their excellent spectral flatness, suggests that carbon nanotube coatings appear extremely promising for thermal detection applications in the infrared.
Citation
Optics Letters
Volume
45
Issue
6

Keywords

black coatings, carbon nanotubes, infrared absorbance, linearity, pyroelectric detectors, responsivity

Citation

Theocharous, E. , Deshpande, R. , Dillon, A. and Lehman, J. (2006), Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared, Optics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31957 (Accessed April 17, 2024)
Created February 19, 2006, Updated October 12, 2021