Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Evaluation of the Hartree-Fock Dispersion (HFD) Model as Practical Tool for Probing Intermolecular Potentials of Small Aromatic Clusters: Comparison of the HFD and MP2 Intermolecular Potentials

Published

Author(s)

Carlos A. Gonzalez, E C. Lim

Abstract

The performance of the Hartree-Fock dispersion (HFD) model for aromatic clusters has been evaluated by comparing the HFD/6-31G intermolecular potentials with the MP2/6-31G potentials for dimers of four aromatic hydrocarbons (benzene, naphthalene, anthracene, and pyrene) and the trimer of naphthalene. The computationally efficient HFD model yields equilibrium geometries and binding energies that are essentially identical to those from MP2 calculations for all aromatic clusters. For the T-shaped dimer of benzene and the cyclic trimer of naphthalene for which experimental geometries are known, the computed geometry and intermolecular separations are in excellent agreement with the experimental data. Although the MP 2/6-31G (not corrected for basis sets superposition errors) and HFD/6-31G binding energies (De) of the dimers of benzene and naphthalene, and the trimer of naphthalene, are almost a factor of two greater than the xperimental value (D0), they are considerably in better agreement with experiment than the MP3 interaction energies computed by using larger and diffuse basis set, 6-31G* (0,25) and gug-cc-pVDZ. The calculated minimum-energy structures of the four aromatic hydrocarbons of differing sizes support the notion that electrostatic interaction favors edge-on (T-shaped) structures, whereas dispersion interaction favors stacked structures. the computed dimer binding energy is approximately a linear function of the number of hexagons in the monomer.
Citation
Journal of Physical Chemistry A
Volume
107
Issue
No. 47

Keywords

ab initio, aromatic clusters, binding energies, Hartree-Fock Dispersion

Citation

Gonzalez, C. and Lim, E. (2003), Evaluation of the Hartree-Fock Dispersion (HFD) Model as Practical Tool for Probing Intermolecular Potentials of Small Aromatic Clusters: Comparison of the HFD and MP2 Intermolecular Potentials, Journal of Physical Chemistry A (Accessed April 26, 2024)
Created November 1, 2003, Updated February 17, 2017