NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Enhanced Channel Modulation in Dual-Gated Silicon Nanowire Transistors
Published
Author(s)
Sang-Mo Koo, Qiliang Li, Monica D. Edelstein, Curt A. Richter, Eric M. Vogel
Abstract
We report an approach to engineer the local band structure of silicon nanowire (SiNW) field-effect transistors (FETs) by using a dual-gated structure. In this device structure, by changing the local bandgap profile of the channel, the top-gate can suppress the ambipolar conduction which is one of the limiting factors of nanotube- or nanowire FETs as required for complimentary logic applications. Our experimental results indicate that an improved on/off current ratio and superior top-gate control with tunable electron- or hole- dominant conductions can be achieved in the SiNW FETs (Wnano ?? 60 nm), compared to simultaneously prepared control devices of large channel width (Wref ?? 5 ??m). It has also been shown by 2-dimensional numerical simulations that the electrostatic bandgap engineering effect by the top-gate is enhanced as the channel width of the FETs decreases.
Koo, S.
, Li, Q.
, Edelstein, M.
, Richter, C.
and Vogel, E.
(2005),
Enhanced Channel Modulation in Dual-Gated Silicon Nanowire Transistors, Nanotechnology, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32067
(Accessed October 9, 2025)