NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Energy Metrics for Product Assembly Equipment and Processes
Published
Author(s)
Shaw C. Feng, FNU Kumaraguru, Christopher U. Brown, Boonserm Kulvatunyou
Abstract
A key factor deciding the capacity to increase the sustainability of final products is the energy efficiency. The energy embodied in a product is an aggregation of all of the energy embodied in the products' components and subsystems, expended through its manufacturing processes and logistical activities. Currently, accurate estimation of this energy metric is hindered due to the unavailability of energy use data traceable to individual processes and equipment associated with the product's assembly. In this paper, we propose using minimally-required energy to compute energy efficiency of a product assembly process. Based on the proposed approach, efficiency metrics established on the process, product, material and equipment characteristics have been presented at the assembly activity and equipment level. A case study has been presented for a hybrid laser welding process to demonstrate the computational methods used to arrive at these efficiency metrics. Major contributions of this paper are the metrics development and exemplifying the metrics through an actual assembly process (hybrid laser welding) case study. We will explain how these metrics can provide industries with a capability to identify opportunities to improve their sustainability performance across their assembly processes.
Feng, S.
, Kumaraguru, F.
, Brown, C.
and Kulvatunyou, B.
(2013),
Energy Metrics for Product Assembly Equipment and Processes, Journal of Cleaner Production, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913306
(Accessed October 10, 2025)