Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Elastic Modulus of Faceted Aluminum Nitride Nanotubes Measured by Contact Resonance Atomic Force Microscopy

Published

Author(s)

Gheorghe Stan, C Ciobanu, Timothy Thayer, George Wang, Randall Creighton, Premsagar P. Kavuri, Leonid A. Bendersky, Robert F. Cook

Abstract

A new methodology for determining the radial elastic modulus of a one-dimensional nanostructure laid on a substrate has been developed. The methodology consists of the combination of contact resonance atomic force microscopy (AFM) with finite element analysis, and we illustrate it for the case of faceted AlN nanotubes with triangular cross-sections. By making precision measurements of the resonance frequencies of the AFM cantilever-probe first in air and then in contact with the AlN nanotubes, we determine the contact stiffness at different locations on the nanotubes, i.e. on edges, inner surfaces, and outer facets. From the contact stiffness we have extracted the indentation modulus and found that this modulus depends strongly on the apex angle of the nanotube, varying from 250 to 400 GPa for indentation on the edges of the nanotubes investigated.
Citation
Nanotechnology
Volume
20
Issue
3

Keywords

aluminum nitride nanotubes, atomic force microscopy, contact resonance, indentation, nanoscale elastic property measurements
Created December 17, 2008, Updated February 19, 2017