Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Einstein-de Haas effect in a NiFe film deposited on a microcantilever

Published

Author(s)

Thomas Mitchell (Mitch) Wallis, John M. Moreland, Pavel Kabos

Abstract

A new methods is presented for determining the magetomechanical ratio, g', in a thin ferromagnetic film deposited on a microcantilever via measurement of the Einstein-de Haas effect. An alternating magnetic field applied in the plane of the cantilever and perpendicular to its length induces bending oscillations of the cantilever that are measured with a fiber optic interferometer. Measurement of g' provides new, complementary information about the g-factor in ferromagnetic films that is not directly available from other characterization techniques. For a 50 nm Ni80Fe20 film deposited on a silicon nitride cantilever, g' is measured to be 1.89 + 0.20.
Citation
Applied Physics Letters
Volume
89

Keywords

Gyromagnetic effects, magnetic thin films, microcantilevers, magnetization dynamics, permalloy, gyromagnetic ratio, magnetic resonance

Citation

Wallis, T. , Moreland, J. and Kabos, P. (2006), Einstein-de Haas effect in a NiFe film deposited on a microcantilever, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32332 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created September 17, 2006, Updated October 12, 2021
Was this page helpful?