NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Einstein-de Haas effect in a NiFe film deposited on a microcantilever
Published
Author(s)
Thomas Mitchell (Mitch) Wallis, John M. Moreland, Pavel Kabos
Abstract
A new methods is presented for determining the magetomechanical ratio, g', in a thin ferromagnetic film deposited on a microcantilever via measurement of the Einstein-de Haas effect. An alternating magnetic field applied in the plane of the cantilever and perpendicular to its length induces bending oscillations of the cantilever that are measured with a fiber optic interferometer. Measurement of g' provides new, complementary information about the g-factor in ferromagnetic films that is not directly available from other characterization techniques. For a 50 nm Ni80Fe20 film deposited on a silicon nitride cantilever, g' is measured to be 1.89 + 0.20.
Wallis, T.
, Moreland, J.
and Kabos, P.
(2006),
Einstein-de Haas effect in a NiFe film deposited on a microcantilever, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32332
(Accessed October 10, 2025)