NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dynamic Modeling and Robust Controller Design of a Two-Stage Parallel Cable Robot
Published
Author(s)
S R. Oh, K K. Mankala, S K. Agrawal, James S. Albus
Abstract
Able robots have been extensively used for the loading and unloading of cargo in shipping industries. In this paper, we look at a two stage cable robot, i.e., a cable robot with two moving platforms connected in series. The sea condition introduces disturbance into the system. This disturbance is considered while modeling the dynamics of the two stage cable robot. A robust controller is designed which can assure robust tracking of the desired end-effector trajectory in the presence of the disturbance. Simulation results presented show the effectiveness of the controller.
Oh, S.
, Mankala, K.
, Agrawal, S.
and Albus, J.
(2004),
Dynamic Modeling and Robust Controller Design of a Two-Stage Parallel Cable Robot, Multi-Body Dynamics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=823489
(Accessed October 16, 2025)