Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Distance Computation Based on Coupled Spin-Torque Oscillators: Application to Image Processing

Published

Author(s)

Minsuk Koo, Matthew Pufall, Yong Shim, Anthony B. Kos, Gyorgy Csaba, Wolfgang Porod , William Rippard, Kaushik Roy

Abstract

Recent research on nano-oscillators has shown the possibility of using a coupled-oscillator network as a core-computing primitive for non-Boolean computation. The spin-torque oscillator (STO) is an attractive candidate because it is CMOS compatible, highly integrable, scalable, and frequency and phase tunable. Based on these promising features, we propose an alternative coupled-oscillator-based architecture for hybrid spintronic and CMOS hardware that computes a multidimensional norm. The hybrid system, composed of an array of four injection-locked STOs and a CMOS detector, is experimentally demonstrated. The measured performance is then used as the input to simulations that demonstrate the hybrid system as both a distance metric and a convolution computational primitive for image-processing applications. Energy and scaling analysis shows that the STO-based coupled-oscillatory system has a higher efficiency than the CMOS-based system with an order of magnitude faster computation speed in distance computation for high-dimensional input vectors.
Citation
Physical Review
Volume
14
Issue
3

Keywords

nano-oscillators, coupled-oscillator network, core-computing primitive, non-Boolean computation, spin-torque oscillator, STO, hybrid spintronics, CMOS hardware, four injection-locked STOs, high-dimensional input vectors

Citation

Koo, M. , Pufall, M. , Shim, Y. , Kos, A. , Csaba, G. , Porod, W. , Rippard, W. and Roy, K. (2020), Distance Computation Based on Coupled Spin-Torque Oscillators: Application to Image Processing, Physical Review, [online], https://doi.org/10.1103/PhysRevApplied.14.034001, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927774 (Accessed October 7, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created August 31, 2020, Updated October 12, 2021
Was this page helpful?