Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Determining Carbon Fiber Composite Loading with Flip-Chip Measurements to 110 GHz

Published

Author(s)

Nina P. Basta, Aaron M. Hagerstrom, Jasper A. Drisko, James C. Booth, Edward J. Garboczi, Christian J. Long, Nathan D. Orloff

Abstract

— Electrical properties of materials are a necessary part of any circuit design. With emerging applications at millimeter- wave frequencies, there is a need to characterize new materials before they come to market. At frequencies below about 67 GHz, it is common to perform both on- wafer calibrations and on-wafer materials characterization with multiple transmission lines fabricated on a material under test. In contrast, at frequencies above 67 GHz, it is common to employ a multiple-offset-reflect calibration technique. Here, we explore the possibility of employing multiple-offset-reflect devices for on-wafer materials characterization at frequencies up to 110 GHz. To compare our results, we performed companion analyses with multiline thru- reflect-line, extracting the permittivity of fused silica and SU-8, a common photo-curable polymer. For fused silica, we obtained a permittivity of 𝟑. 𝟖𝟎 ± 𝟎. 𝟎𝟏 across the full frequency regime. For SU-8, we obtained a permittivity of 𝟑. 𝟑𝟎 ± 𝟎. 𝟎𝟏 at 28 GHz, which agreed with the literature.
Citation
IEEE Transactions on Microwave Theory and Techniques

Keywords

multiple offset, short/reflect (one or two port) calibration, propagation constant, broadband, artifact, non- destructive, permittivity, materials, 110 GHz, permeability, design
Created September 1, 2018, Updated January 27, 2020