Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Determination of Optimal Parameters for CD-SEM Measurement of Line Edge Roughness

Published

Author(s)

B Bunday, M R. Bishop, D Mccormack, John S. Villarrubia, Andras Vladar, Theodore V. Vorburger, Ndubuisi George Orji, J Allgair

Abstract

The measurement of line-edge roughness (LER) has recently become a topic of concern in the litho-metrology community and the semiconductor industry as a whole. The Advanced Metrology Advisory Group (AMAG), a council composed of the chief metrologists from the International SEMATECH (ISMT) consortium"s Member Companies and from the National Institute of Standards and Technology (NIST), has a project to investigate LER metrics and to direct the critical dimension scanning electron microscope (CD-SEM) supplier community towards a semiconductor industry-backed, standardized solution for implementation. The 2003 International Technology Roadmap for Semiconductors (ITRS) has included a new definition for roughness. The ITRS envisions root mean square measurements of edge and width roughness. There are other possible metrics, some of which are surveyed here. The ITRS envisions the root mean square measurements restricted to roughness wavelengths falling within a specified process-relevant range and with measurement repeatability better than a specified tolerance. This study addresses the measurement choices required to meet those specifications. An expression for the length of line that must be measured and the spacing of measurement positions along that length is derived. Noise in the image is shown to produce roughness measurement errors that have both random and nonrandom (i.e., bias) components. Measurements are reported on both UV resist and polycrystalline silicon in special test patterns with roughness typical for those materials. These measurements indicate that the sensitivity of a roughness measurement to noise depends importantly both on the choice of edge detection algorithm and the quality of the focus. Measurements are less sensitive to noise when a model-based or sigmoidal fit algorithm is used and when the images are in good focus. Using the measured roughness characteristics for UV resist lines and applying the ITRS requirements for the 90 nm technology node, the derived expression for sampling length and sampling interval implies that a length at least 8 times the node (i.e., 720 nm) must be measured at intervals of 7.5 nm or less.
Proceedings Title
Proceedings of SPIE, Metrology, Inspection, and Process Control for Microlithography XVIII, Richard M. Silver
Volume
5375
Issue
Part 1
Conference Dates
February 23, 2004
Conference Location
Santa Clara, CA, USA
Conference Title
SEM/Scatterometry for Critical Dimension Metrology II

Keywords

dimensional metrology, Line Edge Roughness (LER), Line Width Roughness (LWR), metrics, power spectral density (PSD), scanning electron microscopy (SEM)

Citation

Bunday, B. , Bishop, M. , Mccormack, D. , Villarrubia, J. , Vladar, A. , Vorburger, T. , Orji, N. and Allgair, J. (2004), Determination of Optimal Parameters for CD-SEM Measurement of Line Edge Roughness, Proceedings of SPIE, Metrology, Inspection, and Process Control for Microlithography XVIII, Richard M. Silver, Santa Clara, CA, USA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822538 (Accessed April 24, 2024)
Created April 30, 2004, Updated October 12, 2021