An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Deposition Rates of Fine and Coarse Particles in Residential Buildings: Literature Review and Measurements in an Occupied Townhouse
Published
Author(s)
Cynthia H. Reed, L A. Wallace, Steven Emmerich
Abstract
Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we measured the deposition of fine and coarse particles following specific source events in an occupied townhouse and also in an unoccupied test house. Experiments were run with three different sources (gas stove, citronella candle, pouring kitty litter), with the central heating and air conditioning (HAC) fan on or off, and with two different types of in-duct filters (electrostatic precipitator and ordinary furnace filter). These tests resulted in a database of deposition rates for particles ranging from 0.3 m to 10 m under a wide range of occupancy conditions. Particle size, HAC fan operation, and the electrostatic precipitator had significant effects on particle loss rates. The standard furnace filter had no effect on loss rates. Surprisingly, the type of source (combustion vs. mechanical generation) and the type of furnishings (fully furnished including carpet vs. largely unfurnished including mostly bare floor) also had no measurable effect on the deposition rates of particles of comparable size. With the HAC fan off, average deposition rates varied from 0.3 h-1 for the smallest particle range (0.3 m to 0.5 m) to 5.2 h-1 for particles greater than 10 m. Operation of the central HAC fan approximately doubled these rates for particles < 5 m, and increased rates by 2 h-1 for the larger particles. An in-duct electrostatic precipitator increased the loss rates compared to the fan-off condition by factors of 5 to 10 for particles < 2.5 m, and by a factor of 3 for the larger particles.
Reed, C.
, Wallace, L.
and Emmerich, S.
(2003),
Deposition Rates of Fine and Coarse Particles in Residential Buildings: Literature Review and Measurements in an Occupied Townhouse, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7068, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860943
(Accessed October 14, 2024)