NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Demographic Effects on Estimates of Automatic Face Recognition Performance
Published
Author(s)
Alice J. O'Toole, P. Jonathon Phillips, Xiaobo An, Joseph Dunlop
Abstract
The intended applications of automatic face recognition systems include venues that vary widely in demographic diversity. Formal evaluations of algorithms do not commonly consider the effects of population diversity on performance. We document the effects of racial and gender demographics on the accuracy of algorithms that match identity in pairs of face images. In particular, we focus on the effects of the background population distribution of non-matched identities against which identity matches are compared. The algorithm we tested was created by fusing three of the top performers from a recent US Government competition. First, we demonstrate the variability of algorithm performance estimates when the population of non-matched identities were demographically yoked by race and/or gender (i.e., yoking constrains non-matched pairs to be of the same race or gender). We also found differences in the match threshold required to obtain a false positive rate of :001 when demographic control scenarios varied. In a second experiment, we explored the effects of progressive increases in population diversity on algorithm performance. We found systematic, but non-general, effects when the balance between majority and minority populations of non-matched identities shifted. Finally, we show that identity match accuracy differs substantially when the non-match identity population varied by race. The results indicate the importance of the demographic composition and modeling of the background population in predicting the accuracy of face recognition algorithms.
O'Toole, A.
, Phillips, P.
, An, X.
and Dunlop, J.
(2011),
Demographic Effects on Estimates of Automatic Face Recognition Performance, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7757, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907482
(Accessed October 2, 2025)