NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Data Analysis Methods for Synthetic Polymer Mass Spectrometry: Autocorrelation
Published
Author(s)
William E. Wallace, Charles M. Guttman
Abstract
Autocorrelation is shown to be useful in describing the periodic patterns found in high-resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time?of?flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function.
Wallace, W.
and Guttman, C.
(2002),
Data Analysis Methods for Synthetic Polymer Mass Spectrometry: Autocorrelation, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=851939
(Accessed November 5, 2025)