NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cytochrome c at Model Membrane Surfaces: Exploration via Second Harmonic Generation - Circular Dichroism and Surface-Enhanced Resonance Raman Spectroscopy
Published
Author(s)
T Petralli-Mallow, Anne L. Plant, M Lewis, J Hicks
Abstract
The novel nonlinear optical method second harmonic generation-circular dichroism (SHG-CD) has been used to follow the adsorption and redox properties of a peripheral membrane protein horse heart cytochrome c, adsorbed at several model membrane surfaces. SHG-CD response is shown to be effected by the oxidation state of the heme within surface-adsorbed cytochrome c, as is consistent with the sensitivity of SHG to the chirality of the heme. SHG-CD measurements show that adsorbed cytochrome c is reducible by ascorbate at alkanethiol surfaces, but not at a phospholipid/alkanethiol hybrid bilayer membranes (HBMs). The adsorption of cytochrome c at the model membrane surfaces was verified by surface plasmon resonance. Surface enhanced resonance Raman measurements show that cytochrome c adsorbed on a hybrid bilayer membrane retains the Fe-heme conformation associated with solution-phase cytochrome c and is reducible by applying potential to the supporting electrode. The inability of ascorbic acid to reduce cytochrome c associated with the HBM is attributed not to a change in its redox potential, but rather to the nature of the interaction of cytochrome c with the HBM.
Petralli-Mallow, T.
, Plant, A.
, Lewis, M.
and Hicks, J.
(2000),
Cytochrome c at Model Membrane Surfaces: Exploration via Second Harmonic Generation - Circular Dichroism and Surface-Enhanced Resonance Raman Spectroscopy, Langmuir
(Accessed October 17, 2025)