NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cutting force estimation from machine learning and physics-inspired data-driven models utilizing accelerometer measurements
Published
Author(s)
Gregory W. Vogl, Yongzhi Qu, Reese Eischens, Gregory Corson, Tony Schmitz, Andrew Honeycutt, Jaydeep Karandikar, Scott Smith
Abstract
Monitoring cutting forces for process control may be challenging because force measurements typically require invasive instrumentation. To remedy this situation, two new methods were recently developed to estimate cutting forces in real time based on the use of on-machine accelerometer measurements. One method uses machine learning, while another uses a physics-inspired data-driven approach, to generate a model that estimates cutting forces from on-machine accelerations. The estimated forces from both approaches were compared against cutting force data collected during various milling operations on several machine tools. The results reveal the advantages and disadvantages of each model to estimate real-time cutting forces.
Proceedings Title
Procedia CIRP
Conference Dates
July 12-14, 2023
Conference Location
Gulf of Naples, IT
Conference Title
17th CIRP Conference on Intelligent Computation in Manufacturing Engineering
Vogl, G.
, Qu, Y.
, Eischens, R.
, Corson, G.
, Schmitz, T.
, Honeycutt, A.
, Karandikar, J.
and Smith, S.
(2023),
Cutting force estimation from machine learning and physics-inspired data-driven models utilizing accelerometer measurements, Procedia CIRP, Gulf of Naples, IT, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956179
(Accessed October 8, 2025)