NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory
Published
Author(s)
Jack F. Douglas, Jacek Dudowicz, Freed Karl
Abstract
Standard classic Flory-Huggins (FH) theory is employed to describe the enigmatic cosolvency and co-nonsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (spinodals) are calculated for solutions of homopolymers B in single and binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters {χαβ} and the ratio r = φA/φC of the concentrations φA and φC of the two solvents. The trends in miscibility are compared to those observed for random copolymer (AxC1 x) homopolymer (B) blends and for A/B/C solutions of polymers B in liquid mixtures of small molecule A and C that naturally associate into polymeric clusters {ApCq}i,(i = 1, 2, · · ·, ∞).
Citation
Journal of Chemical Physics
Pub Type
Journals
Keywords
phase separation, polymer in mixed solvents, co-solvency, co-non-solvency, block copolymers, Flory-Huggins theory
Douglas, J.
, Dudowicz, J.
and Karl, F.
(2015),
Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory, Journal of Chemical Physics
(Accessed October 16, 2025)