Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Considerations for uranium isotope ratio analysis by atmospheric pressure ionization mass spectrometry

Published

Author(s)

Thomas P. Forbes, Christopher W. Szakal

Abstract

The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear non-proliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10’s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
Citation
Analyst
Volume
144
Issue
1

Keywords

isotope ratio analysis, uranium detection, atmospheric pressure ionization, mass spectrometry, ultra-high-resolution mass spectrometry
Created November 14, 2018, Updated December 18, 2018