Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

COMPUTATIONAL MODELING OF HYDROGEN-ASSISTED FATIGUE CRACK GROWTH IN PIPELINE STEELS

Published

Author(s)

Andrew Slifka, Robert L. Amaro, Elizabeth S. Drexler, Devin T. O'Connor, Benjamin E. Long

Abstract

In this work we further develop a model to predict hydrogen-assisted fatigue crack growth in steel pipelines and pressure vessels. This implementation of the model is informed by finite element code, which uses an elastic-plastic constitutive model in conjunction with a hydrogen diffusion model to predict the deformation and concentration of hydrogen around a fatigue crack tip. The hydrogen concentration around the crack tip is used to inform our fatigue crack growth model and account for the effect of hydrogen embrittlement. We first use our model to predict the fatigue crack growth of X100 pipeline steel at different levels of applied hydrogen pressure. We show that our simulated results compare well with prior X100 experimental fatigue crack growth work.
Proceedings Title
Proceeding of the International Hydrogen Conference 2016
Conference Dates
September 11-14, 2016
Conference Location
Moran, WY, US
Conference Title
International Hydrogen Conference 2016

Keywords

fatigue crack growth rate, hydrogen, modeling, pipeline, steel

Citation

Slifka, A. , Amaro, R. , Drexler, E. , O'Connor, D. and Long, B. (2017), COMPUTATIONAL MODELING OF HYDROGEN-ASSISTED FATIGUE CRACK GROWTH IN PIPELINE STEELS, Proceeding of the International Hydrogen Conference 2016, Moran, WY, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921589 (Accessed December 3, 2022)
Created July 31, 2017, Updated April 8, 2022