Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Match to Theory and Experiment.

Published

Author(s)

Edward J. Garboczi, C H. Arns, M A. Knackstedt, W V. Pinczewski

Abstract

Elastic property-porosity relationships are derived directly from microtomographic images. This is illustrated for a suite of 4 samples of Fontainebleau sandstone with porosities ranging from 7.5% to 22%. A finite element method is used to derive the elastic properties of digitized images. By estimating and minimizing several sources of numerical error very accurate predictions of properties are derived in excellent agreement with experimental measurements over a wide range of the porosity. We consider the elastic properties of the digitized images under dry, water- and oil-saturated conditions. The observed change in the elastic properties due to fluid substitution is in excellent agreement with the exact Gassmann equations. This shows both the accuracy and the feasibility of combining microtomographic images with elastic calculations to accurately predict petrophysical properties of individual rock morphologies. We compare the numerical predictions to various empirical, effective medium and rigorous approximations used to relate the elastic properties of rocks to porosity under different saturation conditions.
Citation
Journal of Geophysics
Publisher Info
, -1

Keywords

elastic property, finite elements, porosity, saturation, microtomography, petrophysics, rock morphology

Citation

Garboczi, E. , Arns, C. , Knackstedt, M. and Pinczewski, W. (2002), Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Match to Theory and Experiment., Journal of Geophysics, , -1, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916992 (Accessed February 29, 2024)
Created September 30, 2002, Updated June 2, 2021