NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Computable Error Bounds for Approximate Periodic Solutions of Autonomous Delay Differential Equations
Published
Author(s)
David E. Gilsinn
Abstract
In this paper we prove a result that says: Given an approximate solution and frequency to a periodic solution of an autonomous delay differential equation that satisfies a certain non-criticality condition, there is an exact periodic solution and frequency in a neighborhood of the approximate solution and frequency and, furthermore, numerical estimates of the size of the neighborhood are computed. Methods are outlined for estimating the parameters required to compute the errors. An application to a Van der Pol oscillator with delay in the nonlinear terms is given.