Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

COMPARISON OF DATA ANALYTICS APPROACHES USING SIMULATION

Published

Author(s)

Sanjay Jain, Anantha Narayanan Narayanan, Yung-Tsun Lee

Abstract

Selecting the right data analytics (DA) approach for an application is rather complex. Obtaining sufficient and right kind of data for evaluating these approaches is a challenge. Simulation models can support this process by generating synthetic data where collecting real data under different conditions would be difficult or impossible. Simulation models can also be used to validate DA models by generating new data under varying conditions. This can help in the evaluation of alternative DA approaches across expected range of operational scenarios. This paper reports on use of simulation to select an approach to support the order promising function in manufacturing. Manufacturers need to quickly estimate cycle times for incoming orders for promising delivery dates. Two DA approaches, Neural Network and Gaussian Process Regression, are evaluated using data generated by a manufacturing simulation model. The applicability of the two approaches is discussed in the context of the selected application.
Proceedings Title
Proceedings of 2018 Winter Simulation Conference
Conference Dates
December 9-12, 2018
Conference Location
Gothernburg, SE
Conference Title
2018 Winter Simulation Conference

Keywords

Virtual factory, simulation, synthetic data, neural networks, Gaussian process regression

Citation

Jain, S. , Narayanan, A. and Lee, Y. (2018), COMPARISON OF DATA ANALYTICS APPROACHES USING SIMULATION, Proceedings of 2018 Winter Simulation Conference, Gothernburg, SE, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926264 (Accessed May 29, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created December 9, 2018, Updated April 13, 2022