NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Collaborative Knowledge Management to Identify Data Analytics Opportunities in Additive Manufacturing
Published
Author(s)
Hyunseop Park, Hyunwoong Ko, Yung-Tsun Lee, Shaw C. Feng, Paul Witherell, Hyunbo Cho
Abstract
Additive Manufacturing (AM) is becoming data-intensive. The ability to identify Data Analytics (DA) opportunities for effective use of AM data becomes a critical factor in the success of AM. To successfully identify high-potential DA opportunities in AM requires a set of distinctive interdisciplinary knowledge. This paper proposes a methodology that enables collaborative knowledge management for identifying and prioritizing DA opportunities in AM. The framework of the proposed methodology has three components: a team of experts, a DA Opportunity Knowledge Base (DOKB), and a prioritization tool. The team of experts provides diverse knowledge that can be used to identify and prioritize DA opportunities. The DOKB, developed by using the Web Ontology Language (OWL), captures diverse knowledge from the experts to identify DA opportunities. The prioritization tool ranks the identified DA opportunities by using the Fuzzy integrated Technique of Order Preference Similarity to the Ideal Solution (Fuzzy-TOPSIS). A case study, in which National Institute of Standards and Technology (NIST) researchers participated, demonstrates our methodology. As a result, 264 DA opportunities for AM's Laser-Powder Bed Fusion (L-PBF) process are identified and prioritized. The prioritized DA opportunities help set a DA direction for L-PBF AM. Our methodology keeps knowledge sharable, reusable, revisable, and extendable. Thus, this methodology can continue to facilitate collaboration within the AM community to identify high potential and high impact DA opportunities in AM.
Park, H.
, Ko, H.
, Lee, Y.
, Feng, S.
, Witherell, P.
and Cho, H.
(2021),
Collaborative Knowledge Management to Identify Data Analytics Opportunities in Additive Manufacturing, Journal of Intelligent Manufacturing, [online], https://doi.org/10.1007/s10845-021-01811-1, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931957
(Accessed October 14, 2025)