Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Collaborative Data Management System for Additive Manufacturing



Yan Lu, Paul W. Witherell, M A. Donmez


As additive manufacturing (AM) continues to mature as a production technology, the limiting factors that have hindered its adoption in the past still exist, for example, process repeatability and material availability issues. Overcoming many of these production hurdles requires a further understanding of geometry-material-process-structure-property relationships for additively manufactured parts. In smaller sample sizes, empirical approaches that seek to harness data have proven to be effective in identifying material process-structure-property relationships. This paper presents a collaborative data management system developed at the National Institute of Standards and Technology (NIST). This data management system is built with NoSQL (Not Only Structured Query Language) database technology and provides a Representational State Transfer (REST) interface for application integration. In addition, a web interface is provided for data curation, exploration and downloading. An AM data schema is provided by NIST for an alpha release, with a plan to iteratively improve the data schema through crowd sourcing. For data exploration, the data management system provides a mechanism for customized web GUIs configurable through a visualization ontology. As a collaboration platform, the data management system is set to evolve through sharing of both the AM schema and AM development data among the stakeholders in the AM community. As data sets continue to accumulate, it becomes possible to establish new correlations between processes, materials, and parts. The functionality of the data management system is demonstrated through the curation and querying of several AM datasets.
Proceedings Title
37th Computers and Information in Engineering Conference (CIE)
Conference Dates
August 6-9, 2017
Conference Location
Cleveland, OH


additive manufacturing, database, collaborative data management


Lu, Y. , Witherell, P. and Donmez, M. (2017), A Collaborative Data Management System for Additive Manufacturing, 37th Computers and Information in Engineering Conference (CIE), Cleveland, OH, [online], (Accessed June 13, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created August 9, 2017, Updated November 8, 2017