Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Characterization of Stabilized Zero Valent Iron Nanoparticles

Published

Author(s)

Lauren F. Greenlee, Stephanie A. Hooker

Abstract

The demonstrated toxicity of certain groups of organic micropollutants in water sources has motivated research in developing novel materials that are able to remove dissolved organic molecules from an aqueous system through adsorption and/or degradation. One approach is to use the enhanced surface properties of nano-sized particles to adsorb, reduce, or oxidize organic contaminants. Our research focuses on the use of catalytic nanoparticles to degrade haloamides, a specific family of disinfection by-products (DBPs) produced during chlorine and chloramine disinfection. This work focuses on the development and characterization of zero valent iron-based catalytic nanoparticles. In particular, different stabilizer compounds are used during nanoparticle synthesis to control the particle size and prevent aggregation. Both the size, shape, and functional groups of the stabilizer compounds are investigated; the role of specific chelating groups, such as phosphates and carboxylates, in controlling particle size are compared. Particles are characterized through several techniques, including dynamic light scattering, transmission electron microscopy, and thermogravimetric analysis.
Citation
Special Edition publication - World Materials Research Institute Forum

Keywords

Nanoparticles, zero valent iron, stabilization, carboxymethyl cellulose, phos-phonates

Citation

Greenlee, L. and Hooker, S. (2011), Characterization of Stabilized Zero Valent Iron Nanoparticles, Special Edition publication - World Materials Research Institute Forum, [online], https://doi.org/10.1007/978-3-642-23348-7_16 (Accessed September 27, 2021)
Created December 10, 2011, Updated November 10, 2018