NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Calibration of Timing Accuracy in the NIST Cyber-Physical Systems Testbed
Published
Author(s)
Marc A. Weiss, YaShian Li-Baboud, Dhananjay Anand, Kevin G. Brady, Paul A. Boynton, Cuong T. Nguyen, Martin J. Burns, Avi M. Gopstein
Abstract
We propose a general methodology for assessing the time accuracy and uncertainties and report results from a project to calibrate timing in the NIST CPS and Smart Grid Testbeds. We measured clock synchronization accuracy and stability as well as latencies for potential experiments in the testbeds. We determined calibrations of GPS receivers to UTC(NIST) with an uncertainty of 16 ns. However, an anomaly occurred coincident with a power shutdown, which resulted in a total uncertainty of receiver calibrations against UTC(NIST) of 100 ns. Synchronization at testbed locations relative to an IEEE 1588 Precision Time Protocol (PTP) grandmaster was found to have a max offset of 36 ns through 2 TCs ± 6 ns one sigma from the grandmaster through two transparent clocks. Finally, we measured the time error relative to the grandmaster of an embedded device attached to a switch without PTP support with a mean offset of 50 s ± 10 s, and at 8 ms ± 500 s for timestamping at the general purpose input/output (GPIO). We report the methodology used, as well as some of challenges encountered and solutions developed in the process.
Weiss, M.
, Li-Baboud, Y.
, Anand, D.
, Brady, K.
, Boynton, P.
, Nguyen, C.
, Burns, M.
and Gopstein, A.
(2018),
A Calibration of Timing Accuracy in the NIST Cyber-Physical Systems Testbed, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.TN.2030
(Accessed October 9, 2025)