Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Calculation of pulse parameters and propagation of uncertainty

Published

Author(s)

Paul D. Hale, Chih-Ming Wang

Abstract

The fundamental starting point for the analysis of all two-state waveforms is the determination of the low- and highstate levels. This is a two-step process. First, the data are grouped into points belonging to each state, and second, the value of each state is determined from the group mean, the mode, the median, or some other statistic. Once the state levels are determined, pulse parameters such as transition duration, amplitude, overshoot, and undershoot can be calculated. The IEEE 181-2003 Standard on Transitions, Pulses, and RelatedWaveforms recommends methods for grouping the data, determining the state levels, and determining pulse parameters, but gives no guidance for propagation of uncertainty, particularly in the presence of systematic and/or correlated sources of error. Correlations are important because certain pulse parameters, such as transition duration and pulse duration, are invariant with respect to, e.g., multiplicative error, which is correlated highly. We propose a new procedure for determining the pulse states that involves clustering the data and then using a robust location estimator to determine the state level. This technique allows the propagation of uncertainty from the covariance of a sampled waveform representation all the way to the calculation of pulse parameters. We use Monte Carlo simulations to verify the proposed procedure for some canonical pulse waveforms.
Citation
IEEE Transactions on Instrumentation and Measurement
Volume
58
Issue
3

Keywords

covariance analysis, metrology, oscilloscopes, pulse measurements, uncertainty

Citation

Hale, P. and Wang, C. (2009), Calculation of pulse parameters and propagation of uncertainty, IEEE Transactions on Instrumentation and Measurement, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32782 (Accessed April 24, 2024)
Created March 1, 2009, Updated January 27, 2020