NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Calculation of the impulse response and phase noise of a high-current photodetector using the drift-diffusion equations
Published
Author(s)
Franklyn Quinlan, Seyed Ehsan Jamali Mahabadi, Shaokang Wang, Thomas F. Carruthers, Curtis R. Menyuk, Meredith N. Hutchinson, Jason D. McKinney, Keith J. Williams
Abstract
We describe a procedure to calculate the impulse response and phase noise of high-current photodetectors using the drift-diffusion equations while avoiding computationally expensive Monte Carlo simulations. We apply this procedure to a modified uni-traveling-carrier (MUTC) diode. In our approach, we first use the full drift-diffusion equations to calculate the steady-state photodetector parameters. We then perturb the generation rate as a function of time to calculate the impulse response. We next calculate the fundamental shot noise limit and cut-off frequency of the device. We find the contributions of the electron, hole, and displacement currents. We calculate the phase noise of an MUTC photodetector. We find good agreement with experimental and Monte Carlo simulation results. We show that phase noise is minimized by having as square an impulse response as possible. Since, our approach is much faster computationally than Monte Carlo simulations, we are able to carry out a broad parameter study to optimize the device performance. We propose a new optimized structure with less phase noise and reduced nonlinearity.
Quinlan, F.
, Mahabadi, S.
, Wang, S.
, Carruthers, T.
, Menyuk, C.
, Hutchinson, M.
, McKinney, J.
and Williams, K.
(2019),
Calculation of the impulse response and phase noise of a high-current photodetector using the drift-diffusion equations, Optics Express, [online], https://doi.org/10.1364/OE.27.003717, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926787
(Accessed November 5, 2025)