NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Bose-Einstein Condensate Superfluid-Mott Insulator Transition in an Optical Lattice
Published
Author(s)
E Calzetta, B- L. Hu, A M. Rey
Abstract
We present in this paper an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site) targeting the critical regime of the Bose - Einstein Condensate superfluid - Mott insulator transition. We focus on the computation of the one - body density matrix and its Fourier transform, the momentum distribution which is directly obtainable from 'time of flight'' measurements. The expected number of particles with zero momentum may be identified with the condensate population, if it is close to the total number of particles. Our main result is an analytic expression for this observable, interpolating between the known results valid for the two regimes separately: the standard Bogoliubov approximation valid in the superfluid regime and the strong coupling perturbation theory valid in the Mott regime. Comparison of our analytic results with exact numerical solutions for $N$ particles in a one-dimensional lattice of $N=5, 7$ and 9 sites shows satisfactory agreement across the transition region.
Citation
Physical Review A (Atomic, Molecular and Optical Physics)
Calzetta, E.
, Hu, B.
and Rey, A.
(2021),
Bose-Einstein Condensate Superfluid-Mott Insulator Transition in an Optical Lattice, Physical Review A (Atomic, Molecular and Optical Physics)
(Accessed November 3, 2025)