NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Bimodal Size Distribution of Self-Assembled InGaAs Quantum Dots
Published
Author(s)
Solveig Anders, C. S. Kim, Benjamin D. Klein, Mark W. Keller, Richard Mirin
Abstract
We investigate energy level quantization in self-assembled InGaAs quantum dots that are embedded In a GaAs matrix. We use capacitance and photoluminescence spectroscopy to analyze the evolution of the energy levels with varying amounts of deposited InGaAs. These techniques suggest that the size distribution of the quantum dots contains two well-separated peaks. Transmission electron microscopy confirms a bimodal size distribution and further shows that the big and the small quantum dots have different shapes. In addition, we use an effective-mass based method to calculate the lower energy states of quantum dots with the physical dimensions obtained by transmission electron and atomic force microscopies. our results allow us to construct the energy level diagrams of the two kinds of quantum dots.
Citation
Physical Review B (Condensed Matter and Materials Physics)
Anders, S.
, Kim, C.
, Klein, B.
, Keller, M.
and Mirin, R.
(2002),
Bimodal Size Distribution of Self-Assembled InGaAs Quantum Dots, Physical Review B (Condensed Matter and Materials Physics), [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=30789
(Accessed October 8, 2025)