Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Artificial Neural Network Modeling for Improved On-Wafer Line-Reflect-Match Calibrations



Jeffrey Jargon, Kuldip Gupta


We model a load using an artificial neural network (ANN) to improve an on-wafer line-reflect-match (LRM) calibration of a vector network analyzer. The ANN is trained with measurement data obtained from a thru-reflect-line (TRL) calibration. The accuracy of the LRM calibration using the ANN-modeled load compares favorably to a benchmark multiline TRL calibration with an average worst-case scattering parameter error bound of 0.017 over a 40 GHz bandwidth.
Conference Dates
September 24-28, 2001
Conference Location
London, 1, UK
Conference Title
European Microwave Conference


artificial neural network, calibration, line-refelct-match, network analyzer


Jargon, J. and Gupta, K. (2001), Artificial Neural Network Modeling for Improved On-Wafer Line-Reflect-Match Calibrations, European Microwave Conference, London, 1, UK (Accessed June 13, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created August 31, 2001, Updated October 12, 2021