An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Anomalous damping of excitations in a collisionless dipolar Bose gas
Author(s)
Stefan Natu, Ryan M. Wilson
Abstract
We present a theory for the Landau damping of low energy quasi-particles in a collisionless, quasi- 2D dipolar Bose gas and produce expressions for the damping rate in uniform and non-uniform systems. In the homogeneous system, we find that the nature of the low energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wave-length excitations. For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing dipolar interactions, and for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of temperature. By contrast, we find that the damping rate for roton-like excitations increases with increasing dipolar interactions.
Citation
Physical Review A (Atomic, Molecular and Optical Physics)
Natu, S.
and Wilson, R.
(1970),
Anomalous damping of excitations in a collisionless dipolar Bose gas, Physical Review A (Atomic, Molecular and Optical Physics)
(Accessed December 12, 2024)