Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Analysis and Optimization based on Reusable Knowledge Base of Process Performance Models

Published

Author(s)

Alexander Brodsky, Guodong Shao, Mohan Krishnamoorthy, Anantha Narayanan Narayanan, Daniel Menasc¿, Ronay Ak

Abstract

In this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes. The proposed architecture and framework will support the storage of modular, extensible, and reusable Knowledge Base (KB) of process performance models. The approach requires developing automated methods that can translate the high-level models in the reusable KB into low-level specialized models required by a variety of underlying analysis tools, including data manipulation, optimization, statistical learning, estimation, and simulation. We also propose an organization and key structure for the reusable KB, composed of atomic and composite process performance models and domain-specific dashboards. Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic tests on a composite process performance model.
Citation
NIST Interagency/Internal Report (NISTIR) - 8094
Report Number
8094

Keywords

smart manufacturing, decision guidance system, data analytics, user interface, optimization, decision support system

Citation

Brodsky, A. , Shao, G. , Krishnamoorthy, M. , Narayanan, A. , Menasc¿, D. and Ak, R. (2015), Analysis and Optimization based on Reusable Knowledge Base of Process Performance Models, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.8094 (Accessed May 25, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created December 21, 2015, Updated October 12, 2021