An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Analysis and Design of Parallel Mechanisms with Flexure Joints
Published
Author(s)
Byoung H. Kang, J Wen, Nicholas Dagalakis, Jason J. Gorman
Abstract
Flexure joints are frequently used in precision motion stages and micro-robotic mechanisms due lo their monolithic construction. The joint compliance, howeyer, can affect the static and dynamic performance of the overall mechanism. In this paper, we consider the analysis and design of general platform type parallel mechanisms containing flexure joints. We consider static performance measures such as task space stiffness and manipulability, while subject to constraints such as joint stress, mechanism size, workspace volume, and dynamic characteristics Based on these performance measures and constraints, we adopt the multi-ohjedive optimization approach. We first obtain the Pareto frontier, which can lhen he used to select the desired design parameters based on secondary criteria such as performance sensitivity. To simplify presentation, we consider only lumped approximation of flexure joints in the pseudo-rigid-body approach. A planar mechanism is included to illustrate the analysis and design techniques. Tools presented in this paper cm also he applied to a broader class of compliant mechanisms, including robots with inherent joint flexibility as well as complianl robots for contact tasks.
Proceedings Title
Proceedings of the 2004 IEEE International Conference on Robotics & Automation
Conference Dates
April 1, 2004
Conference Location
New Orleans, LA, USA
Conference Title
IEEE International Conference on Robotics & Automation,
Kang, B.
, Wen, J.
, Dagalakis, N.
and Gorman, J.
(2004),
Analysis and Design of Parallel Mechanisms with Flexure Joints, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, USA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822663
(Accessed December 14, 2024)