Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

AFM characterization of cellulose nanocrystal height and width using internal calibration standards



Maohui Chen, Jeremie Parot, Vincent A. Hackley, Shan Zou, Linda J. Johnston


A variety of models have been suggested for the cross-sectional shape and dimensions of cellulose nanocrystals (CNCs). Although many studies report measurements of CNC width (from transmission electron microscopy, TEM) and height (from atomic force microscopy, AFM), few have measured both cross-sectional dimensions for the same CNC sample and the same particles. Previous work has demonstrated that the TEM width is approximately twice the AFM height, a result that was explained by lateral aggregation of CNCs. Here we examine this question in more detail by measuring both CNC width and height by a single technique, AFM. The ability to measure both cross-sectional dimensions was facilitated by several factors: access to a fractionated CNC sample with few agglomerated particles, AFM imaging at low applied force with a small, nominal probe radius and in situ calibration of the AFM probe radius using co-deposited gold nanoparticles (AuNPs). Two sizes of AuNPs provided optimal calibration of the tip radius and allowed internal validation of the approach. The results show that the CNC width/height ratio covers a relatively wide range with a larger variation in width than height. The ratios indicate that approximately a third of the particles adsorb with their longer cross-sectional side on the surface. A fraction of CNCs (28 %) have an approximately symmetric cross-section whereas the remainder are asymmetric with one axis that is 2-3 times longer than the other. The results are consistent with the formation of a large fraction of laterally aggregated CNCs that cannot be resolved as individual particles. This has important implications for applications in which the particle length/cross-section determines the CNC properties.


nanotechnology, metrology, field flow fractionation, atomic force microscopy, nano cellulose, sustainable materials


Chen, M. , Parot, J. , Hackley, V. , Zou, S. and Johnston, L. (2021), AFM characterization of cellulose nanocrystal height and width using internal calibration standards, Cellulose, [online],, (Accessed June 20, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 26, 2021, Updated October 14, 2021