Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Advanced Distillation Curve Analysis on Ethyl Levulinate as a Diesel Fuel Oxygenate and a Hybrid Biodiesel Fuel

Published

Author(s)

Bret Windom, Tara Lovestead, Mark Mascal, Edward Nikitin, Thomas J. Bruno

Abstract

Diminishing petroleum reserves, the potential of supply disruptions, price volatility, as well as environmental considerations resulting from polluting emissions, have led to development of alternative liquid fuels and fuel additives produced from renewable feedstocks. Recently, a new processing technique has been developed which converts the carbohydrates found in plant biomass into ethyl levulinate, which has properties making it a possible diesel fuel oxygenate additive. Additionally, the new processing technique applied to oil-containing seeds can create a biodiesel fuel at high yields, while enhancing the cold flow properties which commonly plague biodiesel fuels. The first part of this two-part study focused on ethyl levulinate as a possible diesel fuel oxygenate additive, by investigating the volatility of petroleum diesel/ethyl levulinate mixtures. Distillation curves were measured with the advanced distillation curve (ADC) method for mixtures containing 1, 2.5, 5, 10, and 20 % ethyl levulinate (vol/vol) and compared to the distillation curve of unblended petroleum diesel fuel. In addition, the concentration of ethyl levulinate was tracked during the distillation for each mixture by use of the composition explicit data channel. The second part of this study investigated fatty acid-levulinate ester biodiesel blends as viable petroleum diesel fuel extender/replacements.
Citation
Energy and Fuels
Volume
25

Keywords

advanced distillation curve (ADC), B100, biodiesel fuel, safflower oil, ethyl levulinate, oxygenate, diesel fuel, distillation, enthalpy of combustion

Citation

Windom, B. , Lovestead, T. , Mascal, M. , Nikitin, E. and Bruno, T. (2011), Advanced Distillation Curve Analysis on Ethyl Levulinate as a Diesel Fuel Oxygenate and a Hybrid Biodiesel Fuel, Energy and Fuels (Accessed October 10, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created March 9, 2011, Updated October 12, 2021