NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Accelerator-Based Production of Scandium Radioisotopes for Applications in Prostate Cancer: Toward Building a Pipeline for Rapid Development of Novel Theranostics
Published
Author(s)
Jason Meier, Hannah Zhang, Richard Freifelder, Mohammed Bhuiyan, Phillip Selman, Megan Mendez, Pavithra Kankanamalage, Thomas Brossard, Antonino Pusateri, Hsiu-Ming Tsai, Lara Leoni, Sagada Penano, Kaustab Ghosh, Brittany Broder, Erica Markiewicz, Amy Renne, Walter Stadler, Ralph Weichselbaum, Jerry Nolen, Chien-Min Kao, Satish Chitneni, David Rotsch, Russell Szmulewitz, Chin-Tu Chen
Abstract
In the field of nuclear medicine, the β+ emitting 43Sc and β- emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their fa-vorable decay schema and shared pharmacokinetics as a true theranostic pair. Addition-ally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in-depth, making the barrier to implementation lower for 43/47Sc than other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be estab-lished and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclo-tron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been de-vised exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 is also presented.
Meier, J.
, Zhang, H.
, Freifelder, R.
, Bhuiyan, M.
, Selman, P.
, Mendez, M.
, Kankanamalage, P.
, Brossard, T.
, Pusateri, A.
, Tsai, H.
, Leoni, L.
, Penano, S.
, Ghosh, K.
, Broder, B.
, Markiewicz, E.
, Renne, A.
, Stadler, W.
, Weichselbaum, R.
, Nolen, J.
, Kao, C.
, Chitneni, S.
, Rotsch, D.
, Szmulewitz, R.
and Chen, C.
(2023),
Accelerator-Based Production of Scandium Radioisotopes for Applications in Prostate Cancer: Toward Building a Pipeline for Rapid Development of Novel Theranostics, Molecules, [online], https://doi.org/10.3390/molecules28166041, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956363
(Accessed October 27, 2025)