NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Accelerating Scientific Discovery through Computation and Visualization II
Published
Author(s)
James S. Sims, William L. George, Steven G. Satterfield, Howard Hung, John G. Hagedorn, Peter M. Ketcham, Terence J. Griffin
Abstract
This is the second in a series of articles describing a wide variety of projects at NIST that synergistically combine physical science and information science. It describes, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate research. The examples include scientific collaborations in the following areas: (1) High Precision Energies for few electron atomic systems, (2) Flows of suspensions, (3) X-ray absorption, (4) Molecular dynamics of fluids, (5) Nanostructures, (6) Dendritic growth in alloys, (7) Screen saver science, (8) genetic programming.
Sims, J.
, George, W.
, Satterfield, S.
, Hung, H.
, Hagedorn, J.
, Ketcham, P.
and Griffin, T.
(2002),
Accelerating Scientific Discovery through Computation and Visualization II, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152136
(Accessed October 10, 2025)