NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
AC-Mode SW-IR Radiation Thermometers for Measurement of Ambient Temperatures
Published
Author(s)
George P. Eppeldauer, Howard W. Yoon
Abstract
Recent improvements in the fabrication technology of short-wave infrared (SWIR) quantum detectors opened a new era in radiation thermometry. Ambient and higher temperatures can be measured with low uncertainties using thermoelectrically (TE) cooled extended-InGaAs (E-IGA) and short-wave photovoltaic-HgCdTe (sw-MCT) detectors. These detectors, because of their low (2.5 ?m and 2.8 ?m, respectively) cut-off wavelengths, have orders of magnitude lower background noise than traditionally used broad-band infrared detectors such as cryogenically cooled, quantum detectors or thermal detectors. Because of the low detector cut-off wavelength, traditional glass-based optics can be used in the radiation thermometers. To measure low temperatures, the signal measured should be in alternating-current (AC), modulated or chopped, mode to separate it from the background-radiation-produced direct-current (DC) signal and its fluctuations. Design considerations and characteristics of a newly developed SWIR radiation thermometer are discussed. A noise-equivalent temperature difference (NETD) of
Eppeldauer, G.
and Yoon, H.
(2007),
AC-Mode SW-IR Radiation Thermometers for Measurement of Ambient Temperatures, TEMPMEKO Conference | 2007 |, Chateau lake Louise, CA
(Accessed November 5, 2025)