NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
3D Nanoscale Characterization of Thin-Film Organic Photovoltaic Device Structures via Spectroscopic Contrast in the TEM
Published
Author(s)
Andrew A. Herzing, Lee J. Richter, Ian M. Anderson
Abstract
The three-dimensional characterization of third generation photovoltaic device structures at the nanometer scale is essential to the development of efficient, reliable, and inexpensive solar cell technologies. Electron tomography is a powerful method for three-dimensional characterization; however, the application of this method to the organic materials systems that comprise typical high-efficiency devices is complicated by the difficulty in generating contrast from the compositionally similar materials. Herein we report the application of low-loss energy-filtered transmission electron microscopy as a method of generating chemical contrast from a common organic bulk-heterojunction thin film consisting of a polymer donor and a fullerene-derivative acceptor. Spectral imaging methods combined with principal component analysis are used to characterize the contrast generation mechanism and to determine the optimum data acquisition parameters for this particular combination of organic phases. A proof of method for using the low-loss spectral signal as a basis for electron tomography is presented, and the advantages and drawbacks of the technique as applied to multiphase organic systems relative to the more commonly employed bright-field imaging approach are outlined.
Herzing, A.
, Richter, L.
and Anderson, I.
(2010),
3D Nanoscale Characterization of Thin-Film Organic Photovoltaic Device Structures via Spectroscopic Contrast in the TEM, Journal of Physical Chemistry C, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905254
(Accessed October 10, 2025)