Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Tara Fortier

Publications

On-Wafer Metrology of a Transmission Line Integrated Terahertz Source

Author(s)
Kassiopeia A. Smith, Bryan T. Bosworth, Nicholas R. Jungwirth, Jerome G. Cheron, Nathan D. Orloff, Christian J. Long, Dylan F. Williams, Richard A. Chamberlin, Franklyn J. Quinlan, Tara M. Fortier, Ari D. Feldman
A combination of on-wafer metrology and high-frequency network analysis was implemented to measure the response of transmission-line integrated Er-GaAs and

Frequency-comb spectroscopy on pure quantum states of a single molecular ion

Author(s)
Chin-wen Chou, Alejandra L. Collopy, Christoph Kurz, Yiheng Lin, Michael E. Harding, Philipp N. Plessow, Tara M. Fortier, Scott A. Diddams, Dietrich G. Leibfried, David R. Leibrandt
Spectroscopy is a powerful tool for studying molecular properties and is commonly performed on large thermal ensembles of molecules that are perturbed by

Optical-Clock-Based Time Scale

Author(s)
Jian Yao, Jeffrey A. Sherman, Tara M. Fortier, Andrew D. Ludlow, Holly Leopardi, Thomas E. Parker, William F. McGrew, Scott A. Diddams, Judah Levine
A time scale is a procedure for accurately and continuously marking the passage of time. It is exemplified by coordinated universal time (UTC), and provides the

Towards the optical second: verifying optical clocks at the SI limit

Author(s)
William F. McGrew, Xiaogang Zhang, Robert J. Fasano, Holly Leopardi, Daniele Nicolodi, Kyle P. Beloy, Jian Yao, Jeffrey A. Sherman, Stefan A. Schaeffer, Joshua J. Savory, Stefania Romisch, Christopher W. Oates, Thomas E. Parker, Tara M. Fortier, Andrew D. Ludlow
The pursuit of ever more precise measures of time and frequency motivates redefinition of the second in terms of an optical atomic transition. To ensure
Created September 17, 2019