Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Leila R. Vale (Fed)

Publications

Demonstration of a 1,820 channel microwave superconducting quantum1 interference device multiplexer for transition-edge sensor bolometers

Author(s)
John Groh, Jason Austermann, James Beall, Shannon Duff, Johannes Hubmayr, Richard Lew, Michael Link, Tammy Lucas, John Mates, Robinjeet Singh, Joel Ullom, Leila Vale, Jeffrey Van Lanen, Michael Vissers
The scalability of most transition-edge sensor arrays is limited by the multiplexing technology which combines their18 signals over a reduced number of wires

EMI susceptibility of a differential time-division SQUID multiplexing circuit for TES readout

Author(s)
Malcolm Durkin, Douglas Bennett, William Doriese, Johnathon Gard, Johannes Hubmayr, Richard Lew, Erin Maloney, Carl Reintsema, Robinjeet Singh, Daniel Schmidt, Joel Ullom, Leila Vale, Michael Vissers
Time Division multiplexing (TDM) using superconducting quantum interference devices (SQUIDs) is being developed to read out Transition-edge sensor arrays for

Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

Author(s)
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing
Created October 9, 2019, Updated December 17, 2024
Was this page helpful?