Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Lee J Richter (Fed)

Lee Richter's research interests lie in the application of optical diagnostics to the study of time-dependent processes occurring at interfaces. He has participated in a series of collaborative research studies that utilized state-resolved gas-phase diagnostics (both laser-induced fluorescence and resonance-enhanced multiphoton ionization) to characterized the energy disposal in the gas phase products arising from surface photochemical events, both photodissociation and photodesorption. These studies employed UHV techniques to prepare well-characterized initial surfaces, and have utilized both ns and fs laser sources to drive the photochemistry. He is currently active in the area of optical characterization of thin films and interfaces, specifically in the development of second-order nonlinear-optical techniques (second harmonic generation, SHG, and sum frequency generation, SFG) for the study of both carrier dynamics at buried interfaces (via electronically resonant SHG) and in situ molecular dynamics (via vibrationally resonant SFG).

Publications

Enhanced Near-Field Raman Spectroscopy

Author(s)
C E. Dentinger, Stephan J. Stranick, Lee J. Richter, Richard R. Cavanagh
Near-field Raman spectroscopy can be used to obtain chemical specificity with the subwavelength spatial resolution of near-field scanning optical microscopy

The role of orientation in the MEL response of OLEDs

Author(s)
Sebastian Engmann, Emily Bittle, Lee J. Richter, Rawad Hallani, John Anthony, David J. Gundlach
Magneto electroluminescence (MEL) is emerging as a powerful tool for the study of spin dynamics in emitting devices. The shape of the MEL response is typically

Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells

Author(s)
Margherita Biondi, Min-Jae Choi, Olivier Ouellette, Se-Woong Baek, Petar Todorovi?, Bin Sun, Peicheng Li, Ahmad R. Kirmani, Laxmi Chiluka, Lee J. Richter, Sjoerd Hoogland, Zheng-Hong Lu, F. Pelayo Garc?a de Arquer, Edward H. Sargent, Mingyang Wei
Colloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic
Created October 9, 2019, Updated June 15, 2021